What Heat is
What Heat is
An important fact about energy is, that all energy tends to take the form of heat energy. The impact of a falling stone generates heat; a waterfall is hotter at the bottom than at the top—the falling particles of water, on striking the ground, generate heat; and most chemical changes are attended by heat changes. Energy may remain latent indefinitely in a lump of wood, but in combustion it is liberated, and we have heat as a result. The atom of radium or of any other radio-active substance, as it disintegrates, generates heat. "Every hour radium generates sufficient heat to raise the temperature of its own weight of water, from the freezing point to the boiling point." And what is heat? Heat is molecular motion. The molecules of every substance, as we have seen on a previous page, are in a state of continual motion, and the more vigorous the motion the hotter the body. As wood or coal burns, the invisible molecules of these substances are violently agitated, and give rise to ether waves which our senses interpret as light and heat. In this constant movement of the molecules, then, we have a manifestation of the energy of motion and of heat.
That energy which disappears in one form reappears in another has been found to be universally true. It was Joule who, by churning water, first showed that a measurable quantity of mechanical energy could be transformed into a measurable quantity of heat energy. By causing an apparatus to stir water vigorously, that apparatus being driven by falling weights or a rotating flywheel or by any other mechanical means, the water became heated. A certain amount of mechanical energy had been used up and a certain amount of heat had appeared. The relation between these two things was found to be invariable. Every physical change in nature involves a transformation of energy, but the total quantity of energy in the universe remains unaltered. This is the great doctrine of the Conservation of Energy.
Substitutes for Coal
Consider the source of nearly all the energy which is used in modern civilisation—coal. The great forests of the Carboniferous epoch now exists as beds of coal. By the burning of coal—a chemical transformation—the heat energy is produced on which at present our whole civilisation depends. Whence is the energy locked up in the coal derived? From the sun. For millions of years the energy of the sun's rays had gone to form the vast vegetation of the Carboniferous era and had been transformed, by various subtle processes, into the potential energy that slumbers in those immense fossilized forests.
The exhaustion of our coal deposits would mean, so far as our knowledge extends at present, the end of the world's civilisation. There are other known sources of energy, it is true. There is the energy of falling water; the great falls of Niagara are used to supply the energy of huge electric power stations. Perhaps, also, something could be done to utilise the energy of the tides—another instance of the energy of moving water. And attempts have been made to utilise directly the energy of the sun's rays. But all these sources of energy are small compared with the energy of coal. A suggestion was made at a recent British Association meeting that deep borings might be sunk in order to utilise the internal heat of the earth, but this is not, perhaps, a very practical proposal. By far the most effective substitutes for coal would be found in the interior energy of the atom, a source of energy which, as we have seen, is practically illimitable. If the immense electrical energy in the interior of the atom can ever be liberated and controlled, then our steadily decreasing coal supply will no longer be the bugbear it now is to all thoughtful men.
The stored-up energy of the great coal-fields can be used up, but we cannot replace it or create fresh supplies. As we have seen, energy cannot be destroyed, but it can become unavailable. Let us consider what this important fact means.
Dissipation of Energy
Energy may become dissipated. Where does it go? since if it is indestructible it must still exist. It is easier to ask the question than to give a final answer, and it is not possible in this Outline, where an advanced knowledge of physics is not assumed on the part of the reader, to go fully into the somewhat difficult theories put forward by physicists and chemists. We may raise the temperature, say, of iron, until it is white-hot. If we stop the process the temperature of the iron will gradually settle down to the temperature of surrounding bodies. As it does so, where does its previous energy go? In some measure it may pass to other bodies in contact with the piece of iron, but ultimately the heat becomes radiated away in space where we cannot follow it. It has been added to the vast reservoir of unavailable heat energy of uniform temperature. It is sufficient here to say that if all bodies had a uniform temperature we should experience no such thing as heat, because heat only travels from one body to another, having the effect of cooling the one and warming the other. In time the two bodies acquire the same temperature. The sum-total of the heat in any body is measured in terms of the kinetic energy of its moving molecules.
There must come a time, so far as we can see at present, when, even if all the heat energy of the universe is not radiated away into empty infinite space, yet a uniform temperature will prevail. If one body is hotter than another it radiates heat to that body until both are at the same temperature. Each body may still possess a considerable quantity of heat energy, which it has absorbed, but that energy, so far as reactions between those two bodies are concerned, is now unavailable. The same principle applies whatever number of bodies we consider. Before heat energy can be utilised we must have bodies with different temperature. If the whole universe were at some uniform temperature, then, although it might possess an enormous amount of heat energy, this energy would be unavailable.