<body><script type="text/javascript"> function setAttributeOnload(object, attribute, val) { if(window.addEventListener) { window.addEventListener('load', function(){ object[attribute] = val; }, false); } else { window.attachEvent('onload', function(){ object[attribute] = val; }); } } </script> <div id="navbar-iframe-container"></div> <script type="text/javascript" src="https://apis.google.com/js/platform.js"></script> <script type="text/javascript"> gapi.load("gapi.iframes:gapi.iframes.style.bubble", function() { if (gapi.iframes && gapi.iframes.getContext) { gapi.iframes.getContext().openChild({ url: 'https://www.blogger.com/navbar.g?targetBlogID\x3d6230759726465311548\x26blogName\x3dThe+Outline+of+Science\x26publishMode\x3dPUBLISH_MODE_BLOGSPOT\x26navbarType\x3dBLUE\x26layoutType\x3dCLASSIC\x26searchRoot\x3dhttps://theoutlineofscience.blogspot.com/search\x26blogLocale\x3den\x26v\x3d2\x26homepageUrl\x3dhttp://theoutlineofscience.blogspot.com/\x26vt\x3d-6954405711558930168', where: document.getElementById("navbar-iframe-container"), id: "navbar-iframe", messageHandlersFilter: gapi.iframes.CROSS_ORIGIN_IFRAMES_FILTER, messageHandlers: { 'blogger-ping': function() {} } }); } }); </script>

The Nebular Theory

THE NEBULAR THEORY

Nebulæ are dim luminous cloud-like patches in the heavens, more like wisps of smoke in some cases than anything else. Both photography and the telescope show that they are very numerous, hundreds of thousands being already known and the number being continually added to. They are not small. Most of them are immensely large. Actual dimensions cannot be given, because to estimate these we must first know definitely the distance of the nebulæ from the earth. The distances of some nebulæ are known approximately, and we can therefore form some idea of size in these cases. The results are staggering. The mere visible surface of some nebulæ is so large that the whole stretch of the solar system would be too small to form a convenient unit for measuring it. A ray of light would require to travel for years to cross from side to side of such a nebula. Its immensity is inconceivable to the human mind.

There appear to be two types of nebulæ, and there is evidence suggesting that the one type is only an earlier form of the other; but this again we do not know.

The more primitive nebulæ would seem to be composed of gas in an extremely rarified form. It is difficult to convey an adequate idea of the rarity of nebular gases. The residual gases in a vacuum tube are dense by comparison. A cubic inch of air at ordinary pressure would contain more matter than is contained in millions of cubic inches of the gases of nebulæ. The light of even the faintest stars does not seem to be dimmed by passing through a gaseous nebula, although we cannot be sure on this point. The most remarkable physical fact about these gases is that they are luminous. Whence they derive their luminosity we do not know. It hardly seems possible to believe that extremely thin gases exposed to the terrific cold of space can be so hot as to be luminous and can retain their heat and their luminosity indefinitely. A cold luminosity due to electrification, like that of the aurora borealis, would seem to fit the case better.

Now the nebular theory is that out of great "fire-mists," such as we have described, stars are born. We do not know whether gravitation is the only or even the main force at work in a nebula, but it is supposed that under the action of gravity the far-flung "fire-mists" would begin to condense round centres of greatest density, heat being evolved in the process. Of course the condensation would be enormously slow, although the sudden irruption of a swarm of meteors or some solid body might hasten matters greatly by providing large, ready-made centres of condensation.

Spiral Nebulæ

It is then supposed that the contracting mass of gas would begin to rotate and to throw off gigantic streamers, which would in their turn form centres of condensation. The whole structure would thus form a spiral, having a dense region at its centre and knots or lumps of condensed matter along its spiral arms. Besides the formless gaseous nebulæ there are hundreds of thousands of "spiral" nebulæ such as we have just mentioned in the heavens. They are at all stages of development, and they are visible to us at all angles—that is to say, some of them face directly towards us, others are edge on, and some are in intermediate positions. It appears, therefore, that we have here a striking confirmation of the nebular hypothesis. But we must not go so fast. There is much controversy as to the nature of these spiral nebulæ. Some eminent astronomers think they are other stellar universes, comparable in size with our own. In any case they are vast structures, and if they represent stars in process of condensation, they must be giving birth to huge agglomerations of stars—to star clusters at least. These vast and enigmatic objects do not throw much light on the origin of our own solar system. The nebular hypothesis, which was invented by Laplace to explain the origin of our solar system, has not yet met with universal acceptance. The explanation offers grave difficulties, and it is best while the subject is still being closely investigated, to hold all opinions with reserve. It may be taken as probable, however, that the universe has developed from masses of incandescent gas.


Photo: Yerkes Observatory.

FIG. 24.—THE GREAT NEBULA IN ORION

The most impressive nebula in the heavens. It is inconceivably greater in dimensions than the whole solar system.


Photo: Lick Observatory.

FIG. 25—GIANT SPIRAL NEBULA, March 23, 1914

This spiral nebula is seen full on. Notice the central nucleus and the two spiral arms emerging from its opposite directions. Is matter flowing out of the nucleus into the arms or along the arms into the nucleus? In either case we should get two streams in opposite directions within the nucleus.

“The Nebular Theory”