<body><script type="text/javascript"> function setAttributeOnload(object, attribute, val) { if(window.addEventListener) { window.addEventListener('load', function(){ object[attribute] = val; }, false); } else { window.attachEvent('onload', function(){ object[attribute] = val; }); } } </script> <div id="navbar-iframe-container"></div> <script type="text/javascript" src="https://apis.google.com/js/platform.js"></script> <script type="text/javascript"> gapi.load("gapi.iframes:gapi.iframes.style.bubble", function() { if (gapi.iframes && gapi.iframes.getContext) { gapi.iframes.getContext().openChild({ url: 'https://www.blogger.com/navbar/6230759726465311548?origin\x3dhttp://theoutlineofscience.blogspot.com', where: document.getElementById("navbar-iframe-container"), id: "navbar-iframe", messageHandlersFilter: gapi.iframes.CROSS_ORIGIN_IFRAMES_FILTER, messageHandlers: { 'blogger-ping': function() {} } }); } }); </script>

Forming New Habits

Forming New Habits

There is a well-known mudfish of Australia, Neoceratodus by name, which has turned its swim-bladder into a lung and comes to the surface to spout. It expels vitiated air with considerable force and takes fresh gulps. At the same time, like an ordinary fish, it has gills which allow the usual interchange of gases between the blood and the water. Now this Australian mudfish or double-breather (Dipnoan), which may be a long way over a yard in length, is a direct and little-changed descendant of an ancient extinct fish, Ceratodus, which lived in Mesozoic times, as far back as the Jurassic, which probably means over five millions of years ago. The Queensland mudfish is an antiquity, and there has not been much change in its lineage for millions of years. We might take it as an illustration of the inertia of evolution. And yet, though its structure has changed but little, the fish probably illustrates evolution in process, for it is a fish that is learning to breathe dry air. It cannot leave the water; but it can live comfortably in pools which are foul with decomposing animal and vegetable matter. In partially dried-up and foul waterholes, full of dead fishes of various kinds, Neoceratodus has been found vigorous and lively. Unless we take the view, which is possible, that the swim-bladder of fishes was originally a lung, the mud-fishes are learning to breathe dry air. They illustrate evolution agoing.


DIAGRAM OF THE LIFE HISTORY OF THE COMMON EEL (Anguilla Vulgalis)

1. The transparent open-sea knife-blade-like larva called a Leptocephalus.

2 and 3. The gradual change of shape from knife-blade-like to cylindrical. The body becomes shorter and loses weight.

4. The young elver, at least a year old, which makes its way from the open sea to the estuaries and rivers. It is 2/3 inches long and almost cylindrical.

5. The fully-formed eel.


Photo: Gambier Bolton.

CASSOWARY

Its bare head is capped with a helmet. Unlike the plumage of most birds its feathers are loose and hair-like, whilst its wings are merely represented by a few black quills. It is flightless and entirely dependent on its short powerful legs to carry it out of danger.


Photo: Gambier Bolton.

THE KIWI, ANOTHER FLIGHTLESS BIRD, OF REMARKABLE APPEARANCE, HABITS, AND STRUCTURE

The herring-gull is by nature a fish-eater; but of recent years, in some parts of Britain, it has been becoming in the summer months more and more of a vegetarian, scooping out the turnips, devouring potatoes, settling on the sheaves in the harvest field and gorging itself with grain. Similar experiments, usually less striking, are known in many birds; but the most signal illustration is that of the kea or Nestor parrot of New Zealand, which has taken to lighting on the loins of the sheep, tearing away the fleece, cutting at the skin, and gouging out fat. Now the parrot belongs to a vegetarian or frugivorous stock, and this change of diet in the relatively short time since sheep-ranches were established in New Zealand is very striking. Here, since we know the dates, we may speak of evolution going on under our eyes. It must be remembered that variations in habit may give an animal a new opportunity to test variations in structure which arise mysteriously from within, as expressions of germinal changefulness rather than as imprints from without. For of the transmissibility of the latter there is little secure evidence.

“Forming New Habits”